
MATRIX METHODS 
OF ANALYSIS

INTRODUCTION

The mathematical language which is most convenient for analyzing multiple degree-
of-freedom vibratory systems is that of matrices. Matrix notation simplifies the pre-
liminary analytical study, and in situations where particular numerical answers are
required, matrices provide a standardized format for organizing the data and the
computations. Computations with matrices can be carried out by hand or by digital
computers. The availability of programs such as MATLAB makes the solution of
many complex problems in vibration analysis a matter of routine.

This chapter describes how matrices are used in vibration analysis. It begins with
definitions and rules for operating with matrices.The formulation of vibration prob-
lems in matrix notation then is treated. This is followed by general matrix solutions
of several important types of vibration problems, including free and forced vibra-
tions of both undamped and damped linear multiple degree-of-freedom systems.
Part II of this chapter considers finite element models.

MATRICES

Matrices are mathematical entities which facilitate the handling of simultaneous equa-
tions.They are applied to the differential equations of a vibratory system as follows:

A single degree-of-freedom system of the type in Fig. 28.1 has the differential
equation

mẍ + cẋ + kx = F

where m is the mass, c is the damping coefficient, k is the stiffness, F is the applied
force, x is the displacement coordinate, and dots denote time derivatives. In Fig. 28.2
a similar three degree-of-freedom system is shown.The equations of motion may be
obtained by applying Newton’s second law to each mass in turn:

mẍ1 + cẋ1 + 5kx1 − 2kx2 = F1

2mẍ2 + 2cẋ2 − 2cẋ3 − 2kx1 + 3kx2 − kx3 = F2 (28.1)

3mẍ3 − 2cẋ2 + 2cẋ3 − kx2 + kx3 = F3

28.1
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The accelerations, velocities, displacements, and forces may be organized into
columns, denoted by single boldface symbols:

ẍ1 ẋ1 x1 F1

ẍ = �ẍ2� ẋ = �ẋ2� x = �x2� f = �F2� (28.2)

ẍ3 ẋ3 x3 F3

The inertia, damping, and stiffness coefficients may be organized into square
arrays:

m 0 0 c 0 0 5k −2k 0

M = �0 2m 0 � C = �0 2c −2c� K = �−2k 3k −k� (28.3)

0 0 3m 0 −2c 2c 0 −k k

By using these symbols, it is shown below that it is possible to represent the three
equations of Eq. (28.1) by the following single equation:

Mẍ + Cẋ + Kx = f (28.4)

Note that this has the same form as the differential equation for the single degree-of-
freedom system of Fig. 28.1. The notation of Eq. (28.4) has the advantage that in sys-
tems of many degrees-of-freedom it clearly states the physical principle that at every
coordinate the external force is the sum of the inertia, damping, and stiffness forces.
Equation (28.4) is an abbreviation for Eq. (28.1). It is necessary to develop the rules
of operation with symbols such as those in Eqs. (28.2) and (28.3) to ensure that no
ambiguity is involved.The algebra of matrices is devised to facilitate manipulations of
simultaneous equations such as Eq. (28.1). Matrix algebra does not in any way sim-
plify individual operations such as multiplication or addition of numbers, but it is an
organizational tool which permits one to keep track of a complicated sequence of
operations in an optimum manner. Matrices are essential elements of linear algebra,1

and are widely employed in structural analysis2 and vibration analysis.3

DEFINITIONS

A matrix is an array of elements arranged systematically in rows and columns. For
example, a rectangular matrix A, of elements ajk, which has m rows and n columns is

a11 a12 . . . a1n

A = [ajk] = �a21 a22 . . . a2n�. . . . . . . . . . . .

am1 am2 . . . amn

28.2 CHAPTER TWENTY-EIGHT, PART I

FIGURE 28.1 Single degree-of-freedom sys-
tem.

FIGURE 28.2 Three degree-of-freedom sys-
tem.
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The elements ajk are usually numbers or functions, but, in principle, they may be any
well-defined quantities.The first subscript j on the element refers to the row number
while the second subscript k refers to the column number. The array is denoted by
the single symbol A, which can be used as such during operational manipulations in
which it is not necessary to specify continually all the elements ajk. When a numeri-
cal calculation is finally required, it is necessary to refer back to the explicit specifi-
cations of the elements ajk.

A rectangular matrix with m rows and n columns is said to be of order (m,n). A
matrix of order (n,n) is a square matrix and is said to be simply a square matrix of
order n. A matrix of order (n,1) is a column matrix and is said to be simply a column
matrix of order n. A column matrix is sometimes referred to as a column vector. Simi-
larly, a matrix of order (1,n) is a row matrix or a row vector. Boldface capital letters are
used here to represent square matrices and lower-case boldface letters to represent
column matrices or vectors. For example, the matrices in Eq. (28.2) are column matri-
ces of order three and the matrices in Eq. (28.3) are square matrices of order three.

Some special types of matrices are:

1. A diagonal matrix is a square matrix A whose elements ajk are zero when j ≠ k.
The only nonzero elements are those on the main diagonal, where j = k. In order to
emphasize that a matrix is diagonal, it is often written with small ticks in the direc-
tion of the main diagonal:

A = ajj

2. A unit matrix or identity matrix is a diagonal matrix whose main diagonal elements
are each equal to unity.The symbol I is used to denote a unit matrix. Examples are

1 0 0

�1 0� �0 1 0�0 1
0 0 1

3. A null matrix or zero matrix has all its elements equal to zero and is simply
written as zero.

4. The transpose AT of a matrix A is a matrix having the same elements but with
rows and columns interchanged. Thus, if the original matrix is

A = [ajk]

the transpose matrix is

AT = [ajk]T = [akj]

For example:

3 2 3 −1
A = �−1 4� AT = �2 4�

The transpose of a square matrix may be visualized as the matrix obtained by rotat-
ing the given matrix about its main diagonal as an axis.

The transpose of a column matrix is a row matrix. For example,

3
x = �−4� xT = [3 4 −2]

−2

MATRIX METHODS OF ANALYSIS 28.3

8434_Harris_28_b.qxd  09/20/2001  11:48 AM  Page 28.3



Throughout this chapter a row matrix is referred to as the transpose of the corre-
sponding column matrix.

5. A symmetric matrix is a square matrix whose off-diagonal elements are sym-
metric with respect to the main diagonal. A square matrix A is symmetric if, for all j
and k,

ajk = akj

A symmetric matrix is equal to its transpose. For example, all three of the matrices
in Eq. (28.3) are symmetric. In addition, the matrix M is a diagonal matrix.

MATRIX OPERATIONS

Equality of Matrices. Two matrices of the same order are equal if their corre-
sponding elements are equal. Thus two matrices A and B are equal if, for every j
and k,

ajk = bjk

Matrix Addition and Subtraction. Addition or subtraction of matrices of the
same order is performed by adding or subtracting corresponding elements. Thus,
A + B = C if for every j and k,

ajk + bjk = cjk

For example, if

3 2 −1 2
A = �−1 4� B = � 5 6�

then

2 4 4 0
A + B = �4 10� A − B = �−6 −2�

Multiplication of a Matrix by a Scalar. Multiplication of a matrix by a scalar c
multiplies each element of the matrix by c. Thus

cA = c[ajk] = [cajk]

In particular, the negative of a matrix has the sign of every element changed.

Matrix Multiplication. If A is a matrix of order (m,n) and B is a matrix of order
(n,p), then their matrix product AB = C is defined to be a matrix C of order (m,p)
where, for every j and k,

cjk = �
n

r = 1
ajrbrk (28.5)

The product of two matrices can be obtained only if they are conformable, i.e., if the
number of columns in A is equal to the number of rows in B.The symbolic equation

(m,n) × (n,p) = (m,p)

28.4 CHAPTER TWENTY-EIGHT, PART I
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indicates the orders of the matrices involved in a matrix product. Matrix products
are not commutative, i.e., in general,

AB ≠ BA

The matrix products which appear in this chapter are of the following types:

Square matrix × square matrix = square matrix
Square matrix × column vector = column vector
Row vector × square matrix = row vector
Row vector × column vector = scalar
Column vector × row vector = square matrix

In all cases, the matrices must be conformable. Numerical examples are given below.

AB = � � � � = �−(3 × 1) + (2 × 5) (3 × 2) + (2 × 6)� = � �(1 × 1) + (4 × 5) −(1 × 2) + (4 × 6)

(3 × 5) + (2 × 3)
Ax = � � � � = �−(1 × 5) + (4 × 3)� = � �

3 2yTA = [−2 1] �−1 4� = [−(2 × 3) − (1 × 1) − (2 × 2) + (1 × 4)] = [−7 0]

yTx = [−2 1] � � = (−10 + 3) = −7

−(5 × 2) (5 × 1)
xyT = � � [−2 1] = �−(3 × 2) (3 × 1)� = � �

The last product always results in a matrix with proportional rows and columns.
The operation of matrix multiplication is particularly suited for representing sys-

tems of simultaneous linear equations in a compact form in which the coefficients
are gathered into square matrices and the unknowns are placed in column matrices.
For example, it is the operation of matrix multiplication which gives unambiguous
meaning to the matrix abbreviation in Eq. (28.4) for the three simultaneous differ-
ential equations of Eq. (28.1). The two sides of Eq. (28.4) are column matrices of
order three whose corresponding elements must be equal. On the right, these ele-
ments are simply the external forces at the three masses. On the left, Eq. (28.4) states
that the resulting column is the sum of three column matrices, each of which results
from the matrix multiplication of a square matrix of coefficients defined in Eq.
(28.3) into a column matrix defined in Eq. (28.2). The rules of matrix operation just
given ensure that Eq. (28.4) is exactly equivalent to Eq. (28.1).

Premultiplication or postmultiplication of a square matrix by the identity matrix
leaves the original matrix unchanged; i.e.,

IA = AI = A

Two symmetrical matrices multiplied together are generally not symmetric. The
product of a matrix and its transpose is symmetric.

5
3

−10
−6

5
3

5
3

21
7

5
3

2
4

3
−1

18
22

7
21

2
6

−1
5

2
4

3
−1
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Continued matrix products such as ABC are defined, provided the number of
columns in each matrix is the same as the number of rows in the matrix immediately
following it. From the definition of matrix products, it follows that the associative law
holds for continued products:

(AB)C = A(BC)

A square matrix A multiplied by itself yields a square matrix which is called the
square of the matrix A and is denoted by A2. If A2 is in turn multiplied by A, the
resulting matrix is A3 = A(A2) = A2(A). Extension of this process gives meaning to
Am for any positive integer power m. Powers of symmetric matrices are themselves
symmetric.

The rule for transposition of matrix products is

(AB)T = BTAT

Inverse or Reciprocal Matrix. If, for a given square matrix A, a square matrix 
A−1 can be found such that

A−1A = AA−1 = I (28.6)

then A−1 is called the inverse or reciprocal of A. Not every square matrix A possesses
an inverse. If the determinant constructed from the elements of a square matrix is
zero, the matrix is said to be singular and there is no inverse. Every nonsingular
matrix possesses a unique inverse. The inverse of a symmetric matrix is symmetric.
The rule for the inverse of a matrix product is

(AB)−1 = (B−1)(A−1)

The solution to the set of simultaneous equations

Ax = c

where x is the unknown vector and c is a known input vector can be indicated with
the aid of the inverse of A. The formal solution for x proceeds as follows:

A−1Ax = A−1c

Ix = x = A−1c

When the inverse A−1 is known, the solution vector x is obtained by a simple matrix
multiplication of A−1 into the input vector c.

Calculation of inverses and the solutions of simultaneous linear equations are
readily performed for surprisingly large values of n by programs such as MATLAB.
When n = 2 and

A = � � x = � � c = � �
hand-computation is possible using the following formulas:

A−1 = � � x1 = x2 =
∆2�∆

∆1�∆
−a12

a11

a22

−a21

1
�∆

c1

c2

x1

x2

a12

a22

a11

a21

28.6 CHAPTER TWENTY-EIGHT, PART I

8434_Harris_28_b.qxd  09/20/2001  11:48 AM  Page 28.6



where the determinants have the values

∆ = a11a22 − a12a21 ∆1 = c1a22 − c2a12 ∆2 = c2a11 − c1a21

QUADRATIC FORMS

A general quadratic form Q of order n may be written as

Q = �
n

j = 1
�

n

k = 1
ajkxjxk

where the ajk are constants and the xj are the n variables. The form is quadratic since
it is of the second degree in the variables.The laws of matrix multiplication permit Q
to be written as

a11 a12 . . . a1n x1

Q = [x1 x2 . . . xn] �a21 a22 . . . a2n� �x2�. . . . . . . . . . . . . . .
an1 an2 . . . ann xn

which is

Q = xTAx

Any quadratic form can be expressed in terms of a symmetric matrix. If the given
matrix A is not symmetric, it can be replaced by the symmetric matrix

B = 1⁄2(A + AT)

without changing the value of the form.
As an example of a quadratic form, the potential energy V for the system of Fig.

28.2 is given by

2V = 3kx1
2 + 2k(x2 − x1)2 + k(x3 − x2)2

= 5kx1x1 − 2kx1x2

− 2kx2x1 + 3kx2x2 − kx2 x3

− kx3 x2 + kx3x3

Using the displacement vector x defined in Eq. (28.2) and the stiffness matrix K in
Eq. (28.3), the potential energy may be written as

V = 1⁄2xTKx

Similarly, the kinetic energy T is given by

2T = mẋ1
2 + 2mẋ2

2 + 3mẋ3
2

In terms of the inertia matrix M and the velocity vector ẋ defined in Eqs. (28.3) and
(28.2), the kinetic energy may be written as

T = 1⁄2ẋTMẋ

The dissipation function D for the system is given by

MATRIX METHODS OF ANALYSIS 28.7
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2D = cẋ1
2 + 2c(ẋ3 − ẋ2)2

= cẋ1ẋ1

+ 2cẋ2ẋ2 − 2cẋ2ẋ3

− 2cẋ3 ẋ2 + 2cẋ3 ẋ3

In terms of the velocity vector ̇x and the damping matrix C defined in Eqs. (28.2) and
(28.3), the dissipation function may be written as

D = 1⁄2ẋTCẋ

The dissipation function gives half the rate at which energy is being dissipated in the
system.

While quadratic forms assume positive and negative values in general, the three
physical forms just defined are intrinsically positive for a vibrating system with lin-
ear springs, constant masses, and viscous damping; i.e., they can never be negative
for a real motion of the system. Kinetic energy is zero only when the system is at
rest. The same thing is not necessarily true for potential energy or the dissipation
function.

Depending upon the arrangement of springs and dashpots in the system, there
may exist motions which do not involve any potential energy or dissipation. For
example, in vibratory systems where rigid body motions are possible (crankshaft tor-
sional systems, free-free beams, etc.), no elastic energy is involved in the rigid body
motions. Also, in Fig. 28.2, if x1 is zero while x2 and x3 have the same motion, there is
no energy dissipated and the dissipation function is zero. To distinguish between
these two possibilities, a quadratic form is called positive definite if it is never nega-
tive and if the only time it vanishes is when all the variables are zero. Kinetic energy
is always positive definite, while potential energy and the dissipation function are
positive but not necessarily positive definite. It depends upon the particular config-
uration of a given system whether the potential energy and the dissipation function
are positive definite or only positive. The terms positive and positive definite are
applied also to the matrices from which the quadratic forms are derived. For exam-
ple, of the three matrices defined in Eq. (28.3), the matrices M and K are positive
definite, but C is only positive. It can be shown that a matrix which is positive but not
positive definite is singular.

Differentiation of Quadratic Forms. In forming Lagrange’s equations of motion
for a vibrating system,* it is necessary to take derivatives of the potential energy V,
the kinetic energy T, and the dissipation function D. When these quadratic forms are
represented in matrix notation, it is convenient to have matrix formulas for differ-
entiation. In this paragraph rules are given for differentiating the slightly more gen-
eral bilinear form

F = xTAy = yTAx

where xT is a row vector of n variables xj, A is a square matrix of constant coeffi-
cients, and y is a column matrix of n variables yj. In a quadratic form the xj are iden-
tical with the yj.

For generality it is assumed that the xj and the yj are functions of n other variables uj.
In the formulas below, the notation Xu is used to represent the following square matrix:

28.8 CHAPTER TWENTY-EIGHT, PART I

* See Chap. 2 for a detailed discussion of Lagrange’s equations.
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. . .

Xu = . . .

. . . . . . . . . . . .

. . .

Now letting ∂/∂u stand for the column vector whose elements are the partial differ-
ential operators with respect to the uj, the general differentiation formula is

= = XuAy + YuATx
⋅⋅⋅

For a quadratic form Q = xTAx the above formula reduces to

= Xu(A + AT )x

Thus whether A is symmetric or not, this kind of differentiation produces a symmetri-
cal matrix of coefficients (A + AT ). It is this fact which ensures that vibration equations
in the form obtained from Lagrange’s equations always have symmetrical matrices of
coefficients. If A is symmetrical to begin with, the previous formula becomes

= 2XuAx

Finally, in the important special case where the xj are identical with the uj, the matrix
Xx reduces to the identity matrix, yielding

= 2Ax (28.7)

which is employed in the following section in developing Lagrange’s equations.

FORMULATION OF VIBRATION PROBLEMS IN MATRIX FORM

Consider a holonomic linear mechanical system with n degrees-of-freedom which
vibrates about a stable equilibrium configuration. Let the motion of the system be
described by n generalized displacements xj(t) which vanish in the equilibrium posi-
tion. The potential energy V can then be expressed in terms of these displacements
as a quadratic form. The kinetic energy T and the dissipation function D can be
expressed as quadratic forms in the generalized velocities ẋj(t).

∂Q
�
∂x

∂Q
�
∂u

∂Q
�
∂u

∂F
�
∂un

∂F
�
∂u2

∂F
�
∂u

∂F
�
∂u1

∂xn�
∂un

∂x2�
∂un

∂x1�
∂un

∂xn�
∂u2

∂x2�
∂u2

∂x1�
∂u2

∂xn�
∂u1

∂x2�
∂u1

∂x1�
∂u1
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The equations of motion are obtained by applying Lagrange’s equations

� � + + = fj(t) [ j = 1, 2, . . . , n]

The generalized external force fj(t) for each coordinate may be an active force in the
usual sense or a force generated by prescribed motion of the coordinates.

If each term in the foregoing equation is taken as the jth element of a column
matrix, all n equations can be considered simultaneously and written in matrix form
as follows:

� � + + = f

The quadratic forms can be expressed in matrix notation as

T = 1⁄2(ẋTMẋ)

D = 1⁄2(ẋTCẋ)

V = 1⁄2(xTKx)

where the inertia matrix M, the damping matrix C, and the stiffness matrix K may be
taken as symmetric square matrices of order n. Then the differentiation rule (28.7)
yields

(Mẋ) + Cẋ + Kx = f

or simply

Mẍ + Cẋ + Kx = f (28.8)

as the equations of motion in matrix form for a general linear vibratory system with
n degrees-of-freedom. This is a generalization of Eq. (28.4) for the three degree-of-
freedom system of Fig. 28.2. Equation (28.8) applies to all linear constant-
parameter vibratory systems. The specifications of any particular system are
contained in the coefficient matrices M, C, and K.The type of excitation is described
by the column matrix f. The individual terms in the coefficient matrices have the
following significance:

mjk is the momentum component at j due to a unit velocity at k.

cjk is the damping force at j due to a unit velocity at k.

kjk is the elastic force at j due to a unit displacement at k.

The general solution to Eq. (28.8) contains 2n constants of integration which
are usually fixed by the n displacements xj(t0) and the n velocities ẋj(t0) at some
initial time t0. When the excitation matrix f is zero, Eq. (28.8) is said to describe
the free vibration of the system. When f is nonzero, Eq. (28.8) describes a forced
vibration. When the time behavior of f is periodic and steady, it is sometimes con-
venient to divide the solution into a steady-state response plus a transient response
which decays with time. The steady-state response is independent of the initial
conditions.

d
�
dt

∂V
�
∂x

∂D
�
∂ẋ

∂T
�
∂ẋ

d
�
dt

∂V
�
∂xj

∂D
�
∂ẋj

∂T
�
∂ẋj

d
�
dt
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COUPLING OF THE EQUATIONS

The off-diagonal terms in the coefficient matrices are known as coupling terms. In
general, the equations have inertia, damping, and stiffness coupling; however, it is
often possible to obtain equations that have no coupling terms in one or more of the
three matrices. If the coupling terms vanish in all three matrices (i.e., if all three
square matrices are diagonal matrices), the system of Eq. (28.8) becomes a set of
independent uncoupled differential equations for the n generalized displacements
xj(t). Each displacement motion is a single degree-of-freedom vibration independent
of the motion of the other displacements.

The coupling in a system depends on the choice of coordinates used to describe
the motion. For example, Figs. 28.3 and 28.4 show the same physical system with two
different choices for the displacement coordinates.

The coefficient matrices corresponding to the coordinates shown in Fig. 28.3 are

m1 0 k1 + k2 −k2
M = �0 m2

� K = � −k2 k2
�

Here the inertia matrix is uncoupled because the coordinates chosen are the
absolute displacements of the masses. The elastic force in the spring k2 is generated
by the relative displacement of the two coordinates, which accounts for the coupling
terms in the stiffness matrix.

The coefficient matrices corresponding to the alternative coordinates shown in
Fig. 28.4 are

m1 + m2 m2 k1 0
M = � m2 m2

� K = �0 k2
�

Here the coordinates chosen relate directly to the extensions of the springs so that
the stiffness matrix is uncoupled. The absolute displacement of m2 is, however, the
sum of the coordinates, which accounts for the coupling terms in the inertia matrix.

A fundamental procedure for solving vibration problems in undamped systems
may be viewed as the search for a set of coordinates which simultaneously uncouples
both the stiffness and inertia matrices.This is always possible. In systems with damp-
ing (i.e., with all three coefficient matrices) there exist coordinates which uncouple
two of these, but it is not possible to uncouple all three matrices simultaneously,
except in the special case, called proportional damping, where C is a linear combi-
nation of K and M.

The system of Fig. 28.2 provides an example of a three degree-of-freedom system
with damping. The coefficient matrices are given in Eq. (28.3). The inertia matrix is
uncoupled, but the damping and stiffness matrices are coupled.

MATRIX METHODS OF ANALYSIS 28.11

FIGURE 28.3 Coordinates (x1,x2) with uncou-
pled inertia matrix.

FIGURE 28.4 Coordinates (x1,x2) with uncou-
pled stiffness matrix. The equilibrium length of
the spring k2 is L2.
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Another example of a system with
damping is furnished by the two
degree-of-freedom system shown in
Fig. 28.5. The excitation here is fur-
nished by acceleration ẍ0(t) of the base.
This system is used as the basis for the
numerical example at the end of Part I
of the chapter. With the coordinates
chosen as indicated in the figure, all
three coefficient matrices have coupling
terms. The equations of motion can be
placed in the standard form of Eq.
(28.8), where the coefficient matrices
and the excitation column are as fol-
lows:

m1 + m2 m2 c1 + c3 c3
M = � m2 m2

� C = � c3 c2 + c3
�

k1 + k3 k3 m1 + m2
K = � k3 k2 + k3

� f = −ẍ0 � m2
�

(28.9)

THE MATRIX EIGENVALUE PROBLEM

In the following sections the solutions to both free and forced vibration problems
are given in terms of solutions to a specialized algebraic problem known as the
matrix eigenvalue problem. In the present section a general theoretical discussion of
the matrix eigenvalue problem is given.

The free vibration equation for an undamped system,

Mẍ + Kx = 0 (28.10)

follows from Eq. (28.8) when the excitation f and the damping C vanish. If a solution
for x is assumed in the form

x = R {vejωt}

where v is a column vector of unknown amplitudes, ω is an unknown frequency, j is the
square root of −1, and R { } signifies “the real part of,” it is found on substituting in
Eq. (28.10) that it is necessary for v and ω to satisfy the following algebraic equation:

Kv = ω2Mv (28.11)

This algebraic problem is called the matrix eigenvalue problem. Where necessary it
is called the real eigenvalue problem to distinguish it from the complex eigenvalue
problem described in the section on Vibration of Systems with Damping.

To indicate the formal solution to Eq. (28.11), it is rewritten as

(K − ω2M)v = 0 (28.12)

which can be interpreted as a set of n homogeneous algebraic equations for the n
elements vj. This set always has the trivial solution

28.12 CHAPTER TWENTY-EIGHT, PART I

FIGURE 28.5 Two degree-of-freedom vibra-
tory system.The equilibrium length of the spring
k1 is L1 and the equilibrium length of the spring
k2 is L2.
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v = 0

It also has nontrivial solutions if the determinant of the matrix multiplying the vec-
tor v is zero, i.e., if

det (K − ω2M) = 0 (28.13)

When the determinant is expanded, a polynomial of order n in ω2 is obtained. Equa-
tion (28.13) is known as the characteristic equation or frequency equation. The
restrictions that M and K be symmetric and that M be positive definite are sufficient
to ensure that there are n real roots for ω2. If K is singular, at least one root is zero.
If K is positive definite, all roots are positive.The n roots determine the n natural fre-
quencies ωr (r = 1, . . . , n) of free vibration.These roots of the characteristic equation
are also known as normal values, characteristic values, proper values, latent roots, or
eigenvalues. When a natural frequency ωr is known, it is possible to return to Eq.
(28.12) and solve for the corresponding vector vr to within a multiplicative constant.
The eigenvalue problem does not fix the absolute amplitude of the vectors v, only
the relative amplitudes of the n coordinates.There are n independent vectors vr cor-
responding to the n natural frequencies which are known as natural modes. These
vectors are also known as normal modes, characteristic vectors, proper vectors, latent
vectors, or eigenvectors.

MODAL AND SPECTRAL MATRICES

The complete solution to the eigenvalue problem of Eq. (28.11) consists of n eigen-
values and n corresponding eigenvectors. These can be assembled compactly into
matrices. Let the eigenvector vr corresponding to the eigenvalue ωr

2 have elements
vjr (the first subscript indicates which row, the second subscript indicates which
eigenvector). The n eigenvectors then can be displayed in a single square matrix V,
each column of which is an eigenvector:

V = [vjk] = � �
The matrix V is called the modal matrix for the eigenvalue problem, Eq. (28.11).

The n eigenvalues ωr
2 can be assembled into a diagonal matrix Ω2 which is known

as the spectral matrix of the eigenvalue problem, Eq. (28.11)

ω1
2 0 . . . 0

�W2 = ωr
2 = �0 ω2

2 . . . 0
. . . . . . . . . . . .
0 0 . . . ωn

2

Each eigenvector and corresponding eigenvalue satisfy a relation of the following
form:

Kvr = Mvrωr
2

By using the modal and spectral matrices it is possible to assemble all of these rela-
tions into a single matrix equation

v1n

v2n

. . .
vnn

. . .

. . .

. . .

. . .

v12

v22

. . .
vn2

v11

v21

. .
vn1
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KV = MVW2 (28.14)

Equation (28.14) provides a compact display of the complete solution to the eigen-
value problem Eq. (28.11).

PROPERTIES OF THE SOLUTION

The eigenvectors corresponding to different eigenvalues can be shown to satisfy the
following orthogonality relations. When ωr

2 ≠ ωs
2,

vr
TKvs = 0 vr

TMvs = 0 (28.15)

In case the characteristic equation has a p-fold multiple root for ω2, then there is a 
p-fold infinity of corresponding eigenvectors. In this case, however, it is always pos-
sible to choose p of these vectors which mutually satisfy Eq. (28.15) and to express
any other eigenvector corresponding to the multiple root as a linear combination of
the p vectors selected. If these p vectors are included with the eigenvectors corre-
sponding to the other eigenvalues, a set of n vectors is obtained which satisfies the
orthogonality relations of Eq. (28.15) for any r ≠ s.

The orthogonality of the eigenvectors with respect to K and M implies that the
following square matrices are diagonal.

VTKV = vr
T Kvr

VTMV = vr
T Mvr

(28.16)

The elements vr
T Kvr along the main diagonal of VTKV are called the modal stiff-

nesses kr, and the elements vr
T Mvr along the main diagonal of VTMV are called the

modal masses mr. Since M is positive definite, all modal masses are guaranteed to be
positive. When K is singular, at least one of the modal stiffnesses will be zero. Each
eigenvalue ωr

2 is the quotient of the corresponding modal stiffness divided by the
corresponding modal mass; i.e.,

ωr
2 =

In numerical work it is sometimes convenient to normalize each eigenvector so
that its largest element is unity. In other applications it is common to normalize the
eigenvectors so that the modal masses mr all have the same value m, where m is
some convenient value such as the total mass of the system. In this case,

VTMV = mI (28.17)

and it is possible to express the inverse of the modal matrix V simply as

V−1 = VTM

An interpretation of the modal matrix V can be given by showing that it defines
a set of generalized coordinates for which both the inertia and stiffness matrices are
uncoupled. Let y(t) be a column of displacements related to the original displace-
ments x(t) by the following simultaneous equations:

y = V−1x or x = Vy

1
�
m

kr�
mr
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The potential and kinetic energies then take the forms

V = 1⁄2xTKx = 1⁄2yT(VTKV)y

T = 1⁄2 ẋTMẋ = 1⁄2 ẏT(VTMV)ẏ

where, according to Eq. (28.16), the square matrices in parentheses on the right
are diagonal; i.e., in the yj coordinate system there is neither stiffness nor inertia
coupling.

An alternative method for obtaining the same interpretation is to start from the
eigenvalue problem of Eq. (28.11). Consider the structure of the related eigenvalue
problem for w where again w is obtained from v by the transformation involving the
modal matrix V.

w = V−1v or v = Vw

Substituting in Eq. (28.11), premultiplying by VT, and using Eq. (28.14),

Kv = ω2Mv

KVw = ω2MVw

VTKVw = ω2VTMVw

(VTMV)W2w = ω2(VTMV)w

Now, since VTMV is a diagonal matrix of positive elements, it is permissible to can-
cel it from both sides, which leaves a simple diagonalized eigenvalue problem for w:

W2w = ω2w

A modal matrix for w is the identity matrix I, and the eigenvalues for w are the same
as those for v.

EIGENVECTOR EXPANSIONS

Any set of n independent vectors can be used as a basis for representing any other
vector of order n. In the following sections, the eigenvectors of the eigenvalue prob-
lem of Eq. (28.11) are used as such a basis.An eigenvector expansion of an arbitrary
vector y has the form

y = �
n

r = 1
vrar (28.18)

where the ar are scalar mode multipliers. When y and the vr are known, it is possible
to evaluate the ar by premultiplying both sides by vs

T M. Because of the orthogonal-
ity relations of Eq. (28.15), all the terms on the right vanish except the one for which
r = s. Inserting the value of the mode multiplier so obtained, the expansion can be
rewritten as

y = �
n

r = 1
vr (28.19)

or alternatively as

vr
T My

�
vr

T Mvr
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y = �
n

r = 1
y (28.20)

The form of Eq. (28.19) emphasizes the decomposition into eigenvectors since the
fraction on the right is just a scalar. The form of Eq. (28.20) is convenient when a
large number of vectors y are to be decomposed, since the fractions on the right,
which are now square matrices, must be computed only once. The form of Eq.
(28.20) becomes more economical of computation time when more than n vectors y
have to be expanded. A useful check on the calculation of the matrices on the right
of Eq. (28.20) is provided by the identity

�
n

r = 1
= I (28.21)

which follows from Eq. (28.20) because y is completely arbitrary.
An alternative expansion which is useful for expanding the excitation vector f is

f = �
n

r = 1
ωr

2Mvrar = �
n

r = 1
Mvr (28.22)

This may be viewed as an expansion of the excitation in terms of the inertia force
amplitudes of the natural modes. The mode multiplier ar has been evaluated by pre-
multiplying by vr

T.A form analogous to Eq. (28.20) and an identity corresponding to
Eq. (28.21) can easily be written.

RAYLEIGH’S QUOTIENT

If Eq. (28.11) is premultiplied by vT, the following scalar equation is obtained:

vTKv = ω2vTMv

The positive definiteness of M guarantees that vTMv is nonzero, so that it is per-
missible to solve for ω2.

ω2 = (28.23)

This quotient is called “Rayleigh’s quotient.” It also may be derived by equating
time averages of potential and kinetic energy under the assumption that the vibra-
tory system is executing simple harmonic motion at frequency ω with amplitude
ratios given by v or by equating the maximum value of kinetic energy to the maxi-
mum value of potential energy under the same assumption. Rayleigh’s quotient has
the following interesting properties.

1. When v is an eigenvector vr of Eq. (28.11), then Rayleigh’s quotient is equal to
the corresponding eigenvalue ωr

2.
2. If v is an approximation to vr with an error which is a first-order infinitesimal,

then Rayleigh’s quotient is an approximation to ωr
2 with an error which is a sec-

ond-order infinitesimal; i.e., Rayleigh’s quotient is stationary in the neighbor-
hoods of the true eigenvectors.

3. As v varies through all of n-dimensional vector space, Rayleigh’s quotient re-
mains bounded between the smallest and largest eigenvalues.

vTKv
�
vTMv

vr
Tf

�
vr

T Mvr

vrvr
T M

�
vr

T Mvr

vrvr
T M

�
vr

T Mvr
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A common engineering application of Rayleigh’s quotient involves simply eval-
uating Eq. (28.23) for a trial vector v which is selected on the basis of physical
insight. When eigenvectors are obtained by approximate methods, Rayleigh’s quo-
tient provides a means of improving the accuracy in the corresponding eigenvalue. If
the elements of an approximate eigenvector whose largest element is unity are cor-
rect to k decimal places, then Rayleigh’s quotient can be expected to be correct to
about 2k significant decimal places.

Perturbation Formulas. The perturbation formulas which follow provide the
basis for estimating the changes in the eigenvalues and the eigenvectors which result
from small changes in the stiffness and inertia parameters of a system. The formulas
are strictly accurate only for infinitesimal changes but are useful approximations for
small changes. They may be used by the designer to estimate the effects of a pro-
posed change in a vibratory system and may also be used to analyze the effects of
minor errors in the measurement of the system properties. Iterative procedures for
the solution of eigenvalue problems can be based on these formulas. They are
employed here to obtain approximations to the complex eigenvalues and eigenvec-
tors of a lightly damped vibratory system in terms of the corresponding solutions for
the same system without damping.

Suppose that the modal matrix V and the spectral matrix W2 for the eigenvalue
problem

KV = MVW2 (28.14)

are known. Consider the perturbed eigenvalue problem

K*V* = M*V*W*
2

where

K* = K + dK M* = M + dM

V* = V + dV W*
2 = W2 + dW2

The perturbation formula for the elements dωr
2 of the diagonal matrix dΩ2 is

dωr
2 = (28.24)

Thus in order to determine the change in a single eigenvalue due to changes in M
and K, it is necessary to know only the corresponding unperturbed eigenvalue and
eigenvector.To determine the change in a single eigenvector, however, it is necessary
to know all the unperturbed eigenvalues and eigenvectors. The following algorithm
may be used to evaluate the perturbations of both the modal matrix and the spectral
matrix. Calculate

F = VT dK V − VT dM VW2

and

L = VTMV

The matrix L is a diagonal matrix of positive elements and hence is easily inverted.
Continue calculating

G = L−1F = [gjk] and H = [hjk]

vr
T dK vr − ωr

2vr
T dM vr���

vr
T Mvr
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where

0 if ωj
2 = ωk

2

hjk = � if ωj
2 ≠ ωk

2

Then, finally, the perturbations of the modal matrix and the spectral matrix are given
by

dV = VH dW2 = gjj (28.25)

These formulas are derived by taking the total differential of Eq. (28.14), premulti-
plying each term by VT, and using a relation derived by taking the transpose of Eq.
(28.14). An interesting property of the perturbation approximation is that the
change in each eigenvector is orthogonal with respect to M to the corresponding
unperturbed eigenvector; i.e.,

vj
T M dvj = 0

VIBRATIONS OF SYSTEMS WITHOUT DAMPING

In this section the damping matrix C is neglected in Eq. (28.8), leaving the general
formulation in the form

Mẍ + Kx = f (28.26)

Solutions are outlined for the following three cases: free vibration (f = 0), steady-
state forced sinusoidal vibration (f = R {dejωt}, where d is a column vector of driving-
force amplitudes), and the response to general excitation (f an arbitrary function of
time). The first two cases are contained in the third, but for the sake of clarity each
is described separately.

FREE VIBRATION WITH SPECIFIED INITIAL CONDITIONS

It is desired to find the solution x(t) of Eq. (28.26) when f = 0 which satisfies the ini-
tial conditions

x = x(0) ẋ = ẋ(0) (28.27)

at t = 0 where x(0) and ẋ(0) are columns of prescribed initial displacements and
velocities. The differential equation to be solved is identical with Eq. (28.10), which
led to the matrix eigenvalue problem in the preceding section. Assuming that the
solution of the eigenvalue problem is available, the general solution of the differen-
tial equation is given by an arbitrary superposition of the natural modes

x = �
n

r = 1
vr(ar cos ωrt + br sin ωrt)

where the vr are the eigenvectors or natural modes, the ωr are the natural frequen-
cies, and the ar and br are 2n constants of integration. The corresponding velocity is

gjk
�ωk

2 − ωj
2
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ẋ = �
n

r = 1
vrωr(−ar sin ωrt + br cos ωrt)

Setting t = 0 in these expressions and substituting in the initial conditions of Eq.
(28.27) provides 2n simultaneous equations for determination of the constants of
integration.

�
n

r = 1
vrar = x(0) �

n

r = 1
vrωrbr = ẋ(0)

These equations may be interpreted as eigenvector expansions of the initial dis-
placement and velocity. The constants of integration can be evaluated by the same
technique used to obtain the mode multipliers in Eq. (28.19). Using the form of Eq.
(28.20), the solution of the free vibration problem then becomes

x(t) = �
n

r = 1
�x(0) cos ωr t + ẋ(0) sin ωr t� (28.28)

STEADY-STATE FORCED SINUSOIDAL VIBRATION

It is desired to find the steady-state solution to Eq. (28.26) for single-frequency sinu-
soidal excitation f of the form

f = R {dejωt}

where d is a column vector of driving force amplitudes (these may be complex to
permit differences in phase for the various components). The solution obtained is a
useful approximation for lightly damped systems provided that the forcing fre-
quency ω is not too close to a natural frequency ωr. For resonance and near-
resonance conditions it is necessary to include the damping as indicated in the
section which follows the present discussion.

The steady-state solution desired is assumed to have the form

x = R {aejωt}

where a is an unknown column vector of response amplitudes. When f and x are
inserted in Eq. (28.26), the following set of simultaneous equations for the elements
of a is obtained:

(K − ω2M)a = d (28.29)

If ω is not a natural frequency, the square matrix K − ω2M is nonsingular and may be
inverted to yield

a = (K − ω2M)−1d

as a complete solution for the response amplitudes in terms of the driving force
amplitudes. This solution is useful if several force amplitude distributions are to be
studied while the excitation frequency ω is held constant. The process requires
repeated inversions if a range of frequencies is to be studied.

An alternative procedure which permits a more thorough study of the effect of
frequency variation is available if the natural modes and frequencies are known. The
driving-force vector d is represented by the eigenvector expansion of Eq. (28.22), and
the response vector a is represented by the eigenvector expansion of Eq. (28.18):

1
�
ωr

vrvr
T M

�
vr

T Mvr
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d = �
n

r = 1
d a = �

n

r = 1
vrcr

where the cr are unknown coefficients. Substituting these into Eq. (28.29), and mak-
ing use of the fundamental eigenvalue relation of Eq. (28.11), leads to

�
n

r = 1
(ωr

2 − ω2)Mvrcr = �
n

r = 1
d

This equation can be uncoupled by premultiplying both sides by vr
T and using the

orthogonality condition of Eq. (28.15) to obtain

(ωr
2 − ω2)vr

TMvrcr = vr
Td

cr =

The final solution is then assembled by inserting the cr back into a and a back into x.

x = R � �
n

r = 1
d� (28.30)

This form clearly indicates the effect of frequency on the response.

RESPONSE TO GENERAL EXCITATION

It is now desired to obtain the solution to Eq. (28.26) for the general case in which
the excitation f(t) is an arbitrary vector function of time and for which initial dis-
placements x(0) and velocities ẋ(0) are prescribed. If the natural modes and fre-
quencies of the system are available, it is again possible to split the problem up into
n single degree-of-freedom response problems and to indicate a formal solution.

Following a procedure similar to that just used for steady-state forced sinusoidal
vibrations, an eigenvector expansion of the solution is assumed:

x(t) = �
n

r = 1
yrcr(t)

where the cr are unknown functions of time and the known excitation f(t) is
expanded according to Eq. (28.22). Inserting these into Eq. (28.26) yields

�
n

r = 1
(Mvr c̈r + Kvrcr) = �

n

r = 1
f(t)

Using Eq. (28.11) to eliminate K and premultiplying by vr
T to uncouple the equation,

c̈r + ωr
2cr

2 = (28.31)

is obtained as a single second-order differential equation for the time behavior of the
rth mode multiplier. The initial conditions for cr can be obtained by making eigen-
vector expansions of x(0) and ẋ(0) as was done previously for the free vibration case.
Formal solutions to Eq. (28.29) can be obtained by a number of methods, including
Laplace transforms and variation of parameters. When these mode multipliers are
substituted back to obtain x, the general solution has the following appearance:

vr
Tf(t)

�
vr

T Mvr

Mvrvr
T

�
vr

T Mvr

vrvr
T

�
vr

T Mvr

ejωt

�
ωr

2 − ω2

vr
Td

�
vr

TMvr

1
�
ωr

2 − ω2

Mvrvr
T

�
vr

T Mvr

Mvrvr
T

�
vr

TMvr
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x(t) = �
n

r = 1
�x(0) cos ωrt + ẋ(0) sin ωrt�

+ �
n

r = 1
	t

0
f(t′) sin {ωr(t − t′)} dt′ (28.32)

The integrals involving the excitation can be evaluated in closed form if the ele-
ments fj(t) of f(t) are simple (e.g., step functions, ramps, single sine pulses, etc.).When
the fj(t) are more complicated, numerical results can be obtained by using integra-
tion software.

VIBRATION OF SYSTEMS WITH DAMPING

In this section solutions to the complete governing equation, Eq. (28.8), are dis-
cussed. The results of the preceding section for systems without damping are 
adequate for many purposes. There are, however, important problems in which it is
necessary to include the effect of damping, e.g., problems concerned with resonance,
random vibration, etc.

COMPLEX EIGENVALUE PROBLEM

When there is no excitation, Eq. (28.8) becomes

Mẍ + Cẋ + Kx = 0

which describes the free vibration of the system. As in the undamped case, there are
2n independent solutions which can be superposed to meet 2n initial conditions.
Assuming a solution in the form

x = uept

leads to the following algebraic problem:

(p2M + pC + K)u = 0 (28.33)

for the determination of the vector u and the scalar p. This is a complex eigenvalue
problem because the eigenvalue p and the elements of the eigenvector u are, in gen-
eral, complex numbers.The most common technique for solving the nth-order eigen-
value problem, Eq. (28.33), is to transform it to a 2nth-order problem having the
same form as Eq. (28.11). This may be done by introducing the column vector ṽ of
order 2n given by

ṽ = {u pu}T

and the two square matrices of order 2n given by

K̃ = � � M̃ = � �
In terms of these, an eigenvalue problem equivalent to Eq. (28.33) is

M
0

C
M

0
M

−K
0

vrvr
T

�
ωrvr

T Mvr

1
�
ωr

vrvr
T M

�
vr

T Mvr
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